Squares of codes and applications to cryptography

Ignacio Cascudo

June 30, 2014 Aarhus University

Powers of a linear code

Let:

- \mathbb{F}_q be a finite field of q elements.
- $C \subseteq \mathbb{F}_q^n$ be an \mathbb{F}_q -linear code of length n.
- d be an integer.
- $\mathbf{v} * \mathbf{w}$ the coordinate-wise (Schur) product of $\mathbf{v}, \mathbf{w} \in \mathbb{F}_q^n$.

Definition (*d*-th power of *C*)

The *d*-th power of *C* is defined as

$$C^{*d} = \mathbb{F}_q \langle \{ \mathbf{c}_1 * \cdots * \mathbf{c}_d : \mathbf{c}_1, \dots, \mathbf{c}_d \in C \} \rangle$$

In this talk: focus on d = 2 (square of C)

Some questions

In general:

How are the parameters of C^{*2} (minimum distance, dimension) related to those of C?

Asymptotic questions, for example:

Question

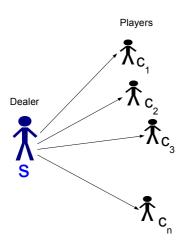
For every finite field \mathbb{F}_q , is there a family of \mathbb{F}_q -linear codes $\{C_i\}$ such that both $\{C_i\}$ and $\{C_i^{*2}\}$ are asymptotically good?

Applications

Squares of a code are an important notion in:

- Multiplicative secret sharing (applications to secure multiparty computation and two-party cryptography)
- Cryptanalysis (McEliece public key encryption).
- Other applications:
 Algebraic complexity (bilinear multiplication algorithms),
 frameproof codes, some lattice constructions...

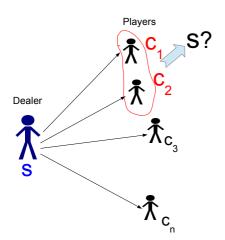
Secret sharing



Setting

- A dealer and n players.
- The dealer knows a secret s.
- Sends information (a share) c_i to each player P_i.

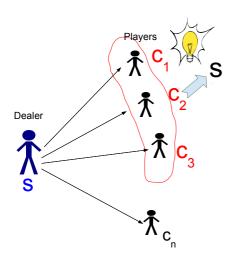
Secret sharing



Properties

t-privacy: Any set of t shares
 → no info about s.

Secret sharing



Properties

- t-privacy: Any set of t shares
 → no info about s.
- r-reconstruction: Any set of r shares → determines s.

Secret sharing schemes from linear codes

A $[\ell+n,\geq\ell]$ \mathbb{F}_q -linear code C yields a secret sharing scheme $\Sigma_\ell(C)$ with

- n players
- Every share in \mathbb{F}_q .
- Secret in \mathbb{F}_q^{ℓ} .

Let C be in systematic form in first ℓ coordinates.

Definition (Sharing algorithm)

To share $\mathbf{s} \in \mathbb{F}_q^\ell$.

- Select word $\mathbf{c} = (\mathbf{s}, c_1, \dots, c_n) \in C$ uniformly at random.
- Send c_i to player i, i = 1, ..., n.


```
q=2,\,\ell=1 (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2-linear code with the following codewords.
```

```
0 0 0 0 0
0 1 1 1 1
0 0 1 1 0
0 1 0 0 1
```

```
1 0 0 1 1
1 1 1 0 0
1 1 0 1 0
1 0 1 0 1
```


 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0	0	
0	1	1	1	1	
0	0	1	1	0	
0	1	0	0	1	

1-privacy:

Each share gives no info about the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

- 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1
- 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0

1-privacy:

Each share gives no info about the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0	0
0	1	1	1	1
0	0	1	1	0
0	1	0	0	1

3-reconstruction:

Every 3 shares determine the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0	0	
0	1	1	1	1	
0	0	1	1	0	
0	1	0	0	1	

3-reconstruction:

Every 3 shares determine the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0	0
0	1	1	1	1
0	0	1	1	0
0	1	0	0	1

```
1 1 1 0 0
```

Neither 2-privacy nor 2-reconstruction:

The shares of $\{c_1, c_4\}$ and the shares of $\{c_2, c_3\}$ determine the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0
1	1	1	1
0	1	1	0
1	0	0	1
0	0	1	1
1	1	0	0
1	Ω	1	0
	0	•	_
	1 0 1 0 1	1 1 0 1 1 0 0 0 1 1	1 1 1 0 1 1 1 0 0

Neither 2-privacy nor 2-reconstruction: The shares of $\{c_1, c_4\}$ and the shares of $\{c_2, c_3\}$ determine the secret. None of $\{c_1, c_2\}$, $\{c_1, c_3\}$, $\{c_2, c_4\}$, $\{c_3, c_4\}$ give info about the secret.

 $q=2,\,\ell=1$ (secrets in \mathbb{F}_2), n=4 (4 players). Let C be the [5,3,2] \mathbb{F}_2 -linear code with the following codewords.

0	0	0	0	0
0	1	1	1	1
0	0	1	1	0
0	1	0	0	1
1	0	0	1	1
1 1	0	0	1 0	1 0

Neither 2-privacy nor 2-reconstruction: The shares of $\{c_1, c_4\}$ and the shares of $\{c_2, c_3\}$ determine the secret. None of $\{c_1, c_2\}$, $\{c_1, c_3\}$, $\{c_2, c_4\}$, $\{c_3, c_4\}$ give info about the secret.

Relations between parameters(I)

From now on we focus on the case $\ell = 1$.

Proposition

$$d(C^{\perp}) \geq t + 2 \Rightarrow t - privacy$$

$$d(C) \ge n - r + 2 \Rightarrow r - reconstruction$$

Implications in the other direction not necessarily true!

Relations between parameters(II)

If we want an "if and only if"...

Definition

Let $w_0(C) := min\{w_H(c) : c \in C, c_0 \neq 0\}$

Remark

Obviously $d(C) \leq w_0(C)$.

Then

Proposition

$$w_0(C^{\perp}) \geq t + 2 \Leftrightarrow t - privacy$$

$$w_0(C) \ge n - r + 2 \Leftrightarrow r - reconstruction$$

Generalization for $\ell > 1$ is also possible.

Linear secret sharing schemes (LSSS)

 $\Sigma_{\ell}(C)$ is a **linear** secret sharing scheme (LSSS).

- The secret- and all share-spaces are \mathbb{F}_q -vector spaces.
- And we have the property:

Property (Linearity)

$$\left. \begin{array}{c} \textbf{\textit{C}}_1, \ldots, \textbf{\textit{C}}_n \text{ shares for } \textbf{\textit{S}} \\ \textbf{\textit{C}}_1', \ldots, \textbf{\textit{C}}_n' \text{ shares for } \textbf{\textit{S}}' \\ \lambda \in \mathbb{F}_q \end{array} \right\} \Rightarrow \begin{array}{c} \textbf{\textit{C}}_1 + \lambda \textbf{\textit{C}}_1', \ldots, \textbf{\textit{C}}_n + \lambda \textbf{\textit{C}}_n' \\ \text{are shares for } \textbf{\textit{S}} + \lambda \textbf{\textit{S}}' \\ \text{in the same scheme.} \end{array}$$

Very useful property: allows secure multi-party computation of linear functions!!

Multiplicative secret sharing

We would like a similar property for multiplication. However,

$$\mathbf{W} = (\mathbf{s}, c_1, \dots, c_n) \in C$$

$$\mathbf{W}' = (\mathbf{s}', c_1', \dots, c_n') \in C$$

$$\Rightarrow \mathbf{W} * \mathbf{W}' = (\mathbf{s} * \mathbf{s}', c_1 c_1', \dots, c_n c_n') \in C \dots$$

... but
$$\mathbf{w} * \mathbf{w}' \in C^{*2}!!$$

Definition

A LSSS $\Sigma(C)$ has \hat{r} -product reconstruction iff $\Sigma(C^{*2})$ has \hat{r} -reconstruction.

Remark

A LSSS $\Sigma(C)$ has \hat{r} -product reconstruction iff For every set $A \subseteq \{1, ..., n\}$ of size \hat{r} , there exists a linear function

$$\psi_{\mathsf{A}}: \mathbb{F}_q^{\hat{\mathsf{r}}} \to \mathbb{F}_q$$

such that

$$ss' = \psi_A((c_ic_i')_{i \in A}).$$

Key property in MPC protocols!!

Definition

- Multiplicative LSSS: LSSS with n-product reconstruction.
- t-strongly multiplicative LSSS: LSSS with t-privacy and (n-t)-product reconstruction.

Specially useful: t-strong multiplicative LSSS where t/n is large.

Example: Shamir's scheme

Assume n < q. Consider a [n+1, t+1]-Reed-Solomon code

$$C_{n,t} := \{(f(x_0), f(x_1), \dots, f(x_n)) : f \in \mathbb{F}_q[X], \deg f \le t\},$$

where $x_0, x_1, \ldots, x_n \in \mathbb{F}_q$, pairwise distinct.

Proposition

 $\Sigma(C_{n,t})$ (Shamir's secret sharing scheme)

- Has t-privacy,
- Has (t + 1)-reconstruction.

Proposition

Suppose $n \ge 2t + 1$. Then $C_{n,t}^{*2} = C_{n,2t}$ and

- $\Sigma(C_{n,t})$ has (2t+1)-product reconstruction.
- $\Sigma(C_{n,t})$ is t-strongly multiplicative if 3t < n (optimal!!!).

Asymptotics

Drawback of Shamir: Number of players n bounded by q.

Why does it matter?

For recent applications: we want t-strong multiplicative LSSS (t-privacy, (n-t)-product reconstruction), where

- $n \to \infty$.
- q constant.
- $t = \Theta(n)$.

Also $\ell = \Theta(n)$ is useful.

In other words, we need a family of \mathbb{F}_q -linear codes C_n of length $n+1\to\infty$ with:

- $w_0(C_n^{*2}) \geq t$,
- $w_0(C_n^{\perp}) \geq t.$

where $t = \Theta(n)$.

(2) implies $\dim(C_n) \geq t + 1$.

Remark

It is sufficient (but not necessary) to have a family of \mathbb{F}_q -linear codes C_n of length $n+1\to\infty$ with

- **1** $d(C_n^{*2}) = \Theta(n),$
- $d(C_n^{\perp}) = \Theta(n).$

Algebraic geometric codes

Let:

- F a function field with full field of constants \mathbb{F}_q .
- P_0, P_1, \ldots, P_n distinct rational places of F.
- $D = \sum P_i$.
- *G* a divisor, supp $G \cap \text{supp } D = \emptyset$.
- $\mathcal{L}(G)$ Riemann-Roch space of G.

Define the AG code:

$$C_{\mathcal{L}}(D,G) := \{ (f(P_0), f(P_1), \dots, f(P_n)) : f \in \mathcal{L}(G) \}$$

Proposition

We have: $d(C_{\mathcal{L}}(D,G)) \ge n+1-\deg G$.

In general it is not true that $C_{\mathcal{L}}(D,G)^{*2} = C_{\mathcal{L}}(D,2G)$, however

Remark

$$C_{\mathcal{L}}(D,G)^{*2} \subseteq C_{\mathcal{L}}(D,2G).$$

and this means

$$d(C_{\mathcal{L}}(D,G)^{*2}) \geq d(C_{\mathcal{L}}(D,2G)).$$

So it is enough to lower bound $d(C_{\mathcal{L}}(D, 2G))!$

On the other hand it is well known that:

Lemma

 $(C_{\mathcal{L}}(D,G))^{\perp} \sim C_{\mathcal{L}}(D,K-G+D)$, K canonical divisor.

We need families of function fields with

- genus: $g \to \infty$
- number of rational places: $n + 1 > (4 + \epsilon)g$

Using Ihara's results (Garcia-Stichtenoth towers).

Theorem (Chen, Cramer 06)

For every square q, $q \ge 49$, there exist \mathbb{F}_q -linear codes C_n with:

- length $n+1 \to \infty$,
- $d(C_n^{\perp}) = \Omega(n)$,
- $d(C_n^{*2}) = \Omega(n)$.

Improvement using f.f. with small torsion of class groups

In order to have $d(C_{\mathcal{L}}(D, K-G+D)) \geq t$ and $d(C_{\mathcal{L}}(D, 2G)) \geq t$ it is enough that

$$\begin{cases} \mathcal{L}((K-G+D)-\sum_{i\in A}P_i)=0 & \forall A\subseteq\{0,\ldots,n\}, |A|=n+1-t. \\ \mathcal{L}(2G-\sum_{i\in A}P_i)=0 & \forall A\subseteq\{0,\ldots,n\}, |A|=n+1-t. \end{cases}$$

We prove results on towers of function fields with many rational points and small 2-torsion in their class groups to conclude:

Theorem (C., Cramer, Xing 11)

For every $q, q \ge 8, q \ne 11, 13$, there exist \mathbb{F}_q -linear codes C_n with

- length $n+1 \to \infty$,
- $d(C_n^{\perp}) = \Omega(n)$,
- $d(C_n^{*2}) = \Omega(n)$.

Improvement using f.f. with small torsion of class groups

In order to have $d(C_{\mathcal{L}}(D, K-G+D)) \geq t$ and $d(C_{\mathcal{L}}(D, 2G)) \geq t$ it is enough that

$$\begin{cases} \mathcal{L}((K-G+D)-\sum_{i\in A}P_i)=0 & \forall A\subseteq\{0,\ldots,n\}, |A|=n+1-t. \\ \mathcal{L}(2G-\sum_{i\in A}P_i)=0 & \forall A\subseteq\{0,\ldots,n\}, |A|=n+1-t. \end{cases}$$

We prove results on towers of function fields with many rational points and small 2-torsion in their class groups to conclude:

Theorem (C., Cramer, Xing 11)

For every $q, q \ge 8, q \ne 11, 13$, there exist \mathbb{F}_q -linear codes C_n with

- length $n+1 \to \infty$,
- $d(C_n^{\perp}) = \Omega(n)$,
- $d(C_n^{*2}) = \Omega(n)$.

Concatenation-based construction

From CC06/CCX11 on extension fields+ dedicated field descent (using dedicated code concatenation).

Theorem (C., Chen, Cramer, Xing 09)

For every finite field \mathbb{F}_q , there exist \mathbb{F}_q -linear codes C_n of length $n+1\to\infty$, $w_0(C_n^*)=\Omega(n)$, $w_0(C_n^{*2})=\Omega(n)$.

However, in this construction, $d(C_n^{\perp})$ necessarily constant, and $d(C_n^{*2})$ may not be $\Omega(n)$.

Other results

Using AG-codes over the extension fields with good higher powers + a more sophisticated concatenation technique

Theorem (Randriam)

For every finite field \mathbb{F}_q , there exist \mathbb{F}_q -linear codes C_n of length $n \to \infty$, dim $C_n = \Omega(n)$, $d(C_n^{*2}) = \Omega(n)$.

The search for other constructions

- All asymptotic constructions so far are based on AG-codes.
- Other (simpler) constructions?
- For random codes:

Theorem (C., Cramer, Mirandola, Zemor 13)

Let C be a random linear code of dimension k and length n(k). If $n(k) \le k(k+1)/2$, then

$$Pr(C^{*2} = \mathbb{F}_q^{n(k)}) = 1 - O(2^{-t(k)})$$

where
$$t(k) := k(k+1)/2 - n(k) \ge 0$$
.

Proofs based on results on quadratic forms.

Conclusions

- Studying parameters of squares of codes has important applications.
- Asymptotically, only AG-based constructions are known to be "good enough".

