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Powers of a linear code

Let:
Fq be a finite field of q elements.
C ⊆ Fn

q be an Fq-linear code of length n.
d be an integer.
v ∗w the coordinate-wise (Schur) product of v,w ∈ Fn

q.

Definition (d-th power of C)
The d-th power of C is defined as

C∗d = Fq〈{c1 ∗ · · · ∗ cd : c1, . . . ,cd ∈ C}〉

In this talk: focus on d = 2 (square of C)

Ignacio Cascudo Squares of codes and applications to cryptography



Some questions

In general:
How are the parameters of C∗2 (minimum distance, dimension) related
to those of C?

Asymptotic questions, for example:

Question
For every finite field Fq, is there a family of Fq-linear codes {Ci} such
that both {Ci} and {C∗2i } are asymptotically good?
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Applications

Squares of a code are an important notion in:

Multiplicative secret sharing (applications to secure multiparty
computation and two-party cryptography)

Cryptanalysis (McEliece public key encryption).

Other applications:
Algebraic complexity (bilinear multiplication algorithms),
frameproof codes, some lattice constructions...
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Setting
A dealer and n players.
The dealer knows a secret s.
Sends information (a share) ci
to each player Pi .
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t-privacy: Any set of t shares
→ no info about s.
r -reconstruction: Any set of r
shares→ determines s.
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Secret sharing schemes from linear codes

A [`+ n,≥ `] Fq-linear code C yields a secret sharing scheme Σ`(C)
with

n players
Every share in Fq.
Secret in F`

q.
Let C be in systematic form in first ` coordinates.

Definition (Sharing algorithm)

To share s ∈ F`
q.

Select word c = (s, c1, . . . , cn) ∈ C uniformly at random.
Send ci to player i , i = 1, . . . ,n.
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Example

q = 2, ` = 1 (secrets in F2), n = 4 (4 players).
Let C be the [5,3,2] F2-linear code with the following codewords.

0 0 0 0 0
0 1 1 1 1
0 0 1 1 0
0 1 0 0 1

1 0 0 1 1
1 1 1 0 0
1 1 0 1 0
1 0 1 0 1
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Relations between parameters(I)

From now on we focus on the case ` = 1.

Proposition

d(C⊥) ≥ t + 2⇒ t − privacy

d(C) ≥ n − r + 2⇒ r − reconstruction

Implications in the other direction not necessarily true!
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Relations between parameters(II)

If we want an “if and only if”...

Definition
Let w0(C) := min{wH(c) : c ∈ C, c0 6= 0}

Remark
Obviously d(C) ≤ w0(C).

Then

Proposition

w0(C⊥) ≥ t + 2⇔ t − privacy

w0(C) ≥ n − r + 2⇔ r − reconstruction

Generalization for ` > 1 is also possible.
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Linear secret sharing schemes (LSSS)

Σ`(C) is a linear secret sharing scheme (LSSS).

The secret- and all share-spaces are Fq-vector spaces.
And we have the property:

Property (Linearity)

c1, . . . , cn shares for s
c′1, . . . , c

′
n shares for s′

λ ∈ Fq

⇒
c1 + λc′1, . . . , cn + λc′n
are shares for s + λs′

in the same scheme.

Very useful property: allows secure multi-party computation of linear
functions!!
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Multiplicative secret sharing

We would like a similar property for multiplication. However,

w = (s, c1, . . . , cn) ∈ C
w′ = (s′, c′1, . . . , c

′
n) ∈ C

}
;w ∗w′ = (s ∗ s′, c1c′1, . . . , cnc′n) ∈ C...

... but w ∗w′ ∈ C∗2!!
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Definition

A LSSS Σ(C) has r̂ -product reconstruction iff Σ(C∗2) has
r̂ -reconstruction.

Remark
A LSSS Σ(C) has r̂ -product reconstruction iff
For every set A ⊆ {1, . . . ,n} of size r̂ , there exists a linear function

ψA : Fr̂
q → Fq

such that
ss′ = ψA((cic′i )i∈A).

Key property in MPC protocols!!
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Definition
Multiplicative LSSS: LSSS with n-product reconstruction.
t-strongly multiplicative LSSS: LSSS with t-privacy and
(n − t)-product reconstruction.

Specially useful: t-strong multiplicative LSSS where t/n is large.
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Example: Shamir’s scheme

Assume n < q. Consider a [n + 1, t + 1]-Reed-Solomon code

Cn,t := {(f (x0), f (x1), . . . , f (xn)) : f ∈ Fq[X ],deg f ≤ t},

where x0, x1, . . . , xn ∈ Fq, pairwise distinct.

Proposition

Σ(Cn,t ) (Shamir’s secret sharing scheme)
Has t-privacy,
Has (t + 1)-reconstruction.

Proposition

Suppose n ≥ 2t + 1. Then C∗2n,t = Cn,2t and
Σ(Cn,t ) has (2t + 1)-product reconstruction.
Σ(Cn,t ) is t-strongly multiplicative if 3t < n (optimal!!!).
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Asymptotics

Drawback of Shamir: Number of players n bounded by q.

Why does it matter?

For recent applications: we want t-strong multiplicative LSSS
(t-privacy, (n − t)-product reconstruction), where

n→∞.
q constant.
t = Θ(n).

Also ` = Θ(n) is useful.
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In other words, we need a family of Fq-linear codes Cn of length
n + 1→∞ with:

1 w0(C∗2n ) ≥ t ,
2 w0(C⊥n ) ≥ t .

where t = Θ(n).
(2) implies dim(Cn) ≥ t + 1.

Remark
It is sufficient (but not necessary) to have a family of Fq-linear codes
Cn of length n + 1→∞ with

1 d(C∗2n ) = Θ(n),
2 d(C⊥n ) = Θ(n).
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Algebraic geometric codes

Let:
F a function field with full field of constants Fq.
P0,P1, . . . ,Pn distinct rational places of F .
D =

∑
Pi .

G a divisor, supp G ∩ supp D = ∅.
L(G) Riemann-Roch space of G.

Define the AG code:

CL(D,G) := {(f (P0), f (P1), . . . , f (Pn)) : f ∈ L(G)}

Proposition

We have: d(CL(D,G)) ≥ n + 1− deg G.
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In general it is not true that CL(D,G)∗2 = CL(D,2G), however

Remark

CL(D,G)∗2 ⊆ CL(D,2G).

and this means

d(CL(D,G)∗2) ≥ d(CL(D,2G)).

So it is enough to lower bound d(CL(D,2G))!

On the other hand it is well known that:

Lemma

(CL(D,G))⊥ ∼ CL(D,K −G + D), K canonical divisor.
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We need families of function fields with
genus: g →∞
number of rational places: n + 1 > (4 + ε)g

Using Ihara’s results (Garcia-Stichtenoth towers).

Theorem (Chen, Cramer 06)
For every square q, q ≥ 49, there exist Fq-linear codes Cn with:

length n + 1→∞,
d(C⊥n ) = Ω(n),
d(C∗2n ) = Ω(n).
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Improvement using f.f. with small torsion of class groups

In order to have d(CL(D,K −G + D)) ≥ t and d(CL(D,2G)) ≥ t it is
enough that{
L((K −G + D)−

∑
i∈A Pi) = 0 ∀A ⊆ {0, . . . ,n}, |A| = n + 1− t .

L(2G −
∑

i∈A Pi) = 0 ∀A ⊆ {0, . . . ,n}, |A| = n + 1− t .

We prove results on towers of function fields with many rational points
and small 2-torsion in their class groups to conclude:

Theorem (C., Cramer, Xing 11)

For every q, q ≥ 8, q 6= 11,13, there exist Fq-linear codes Cn with
length n + 1→∞,
d(C⊥n ) = Ω(n),
d(C∗2n ) = Ω(n).
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Concatenation-based construction

From CC06/CCX11 on extension fields+ dedicated field descent (using
dedicated code concatenation).

Theorem (C., Chen, Cramer, Xing 09)

For every finite field Fq, there exist Fq-linear codes Cn of length
n + 1→∞, w0(C⊥n ) = Ω(n), w0(C∗2n ) = Ω(n).

However, in this construction, d(C⊥n ) necessarily constant, and d(C∗2n )
may not be Ω(n).
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Other results

Using AG-codes over the extension fields with good higher powers + a
more sophisticated concatenation technique

Theorem (Randriam)
For every finite field Fq, there exist Fq-linear codes Cn of length
n→∞, dim Cn = Ω(n), d(C∗2n ) = Ω(n).
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The search for other constructions

All asymptotic constructions so far are based on AG-codes.
Other (simpler) constructions?
For random codes:

Theorem (C., Cramer, Mirandola, Zemor 13)

Let C be a random linear code of dimension k and length n(k). If
n(k) ≤ k(k + 1)/2, then

Pr(C∗2 = Fn(k)
q ) = 1−O(2−t(k))

where t(k) := k(k + 1)/2− n(k) ≥ 0.

Proofs based on results on quadratic forms.
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Conclusions

Studying parameters of squares of codes has important
applications.
Asymptotically, only AG-based constructions are known to be
“good enough”.
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