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Ramp secret sharing scheme

Secret: 5 € ]Ff,, ¢>1. Sharesx;€Fq, i=1,...,n.
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Ramp secret sharing scheme

Secret: 5 € JFf,, ¢>1. Sharesx;€Fq, i=1,...,n.

Linear schemes:
GG C IFQ’, linear codes.

{51, A Ekz} basis for C,.
{51, el E/Q’ E,QH, cel Bkl} basis for Ci.
codim(Cl, C2) = kl — k2 = /4.
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Ramp secret sharing scheme

Secret: 5 € JFf,, ¢>1. Sharesx;€Fq, i=1,...,n.

Linear schemes:
GG C IFQ’, linear codes.

{51, A Ekz} basis for C,.
{51, el E/Q’ E,QH, cel Bkl} basis for Ci.
codim(Cl, C2) = kl — k2 = /4.

Secret: 5= (s1,...,5) € Iﬁ‘g.
Shares: (X17 e 7X,,) = d151 + -+ deB;Q + 515/(24_1 + -4 SgBkl
where dy, ..., dy, € IF; are chosen by random.

Geil, Martin, Matsumoto, Ruano, Luo Ramp secret sharing schemes from one-point AG codes



Thresholds

Recall, 5= (s1,...,s).

For m=1,...,¢, ty, and r,, are the unique numbers such that:

@ No group of t,, participants can recover m g-bits of
information about S, but some groups of size t,, + 1 can.

@ All groups of size r,, can recover m g-bits of information
about S, but some groups of size r,, — 1 cannot.
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How to find r,, and t,,

From [Bains, 2008], [Kurihara et al. 2012], [G. et al. 2014] we have:

Theorem

tm = Mm((C2)J_7 (Cl)l) -1
frm = n—Mp_m1(G, G)+1,

where M, (Cy, G3) is the m-th relative generalized Hamming
weight for C1 with respect to C,.
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RGHW

| supp{(0,0,1,1,0),(0,1,0,1,1)} [= 4

Definition

Let Co C G be linear codes and ¢ = dim(C;) — dim(G,). For
m=1,...,¢ we have:

Mpm(Ci, G) = min{|supp(D)| | D is a linear subcode of Ci,
DN C, = {0} and dim(D) = m}.
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One-point AG codes

Pi,...,Ppn, Q rational places in function field of trdg=1.
We consider iy < i1

G=C(D=P1+ -+ Ppu2Q) C G = C(D,11Q) C Fg.
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One-point AG codes

Pi,...,Ppn, Q rational places in function field of trdg=1.
We consider iy < i1
G=C(D=P1+ -+ Ppm2Q) € G =Cc(D,11Q) C Fg.

We have a general method to estimate (find) RGHWs of these
codes.

For Hermitian codes often sharp.
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Estimating RGHW of AG codes

H(Q) Weierstrass semigroup of Q.

H*(Q) = {m e H(Q) | Cc(D,mQ) # C(D,(m—1)Q)}.
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Estimating RGHW of AG codes

H(Q) Weierstrass semigroup of Q.
H*(Q) = {m e H(Q) | Cc(D,mQ) # C(D,(m—1)Q)}.

Example:
H(Q) = (3,4) ={0,3,4,6,7,8,.. .}

H*(Q) = {0,3,4,6,7,8,...,26,28,29,32}.
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Estimating RGHW of AG codes

H(Q) Weierstrass semigroup of Q.
H*(Q) = {m e H(Q) | Cc(D,mQ) # C(D,(m—1)Q)}.

Example:
H(Q) = (3,4) ={0,3,4,6,7,8,.. .}

H*(Q) = {0,3,4,6,7,8,...,26,28,29,32}.
If D C C(D,20Q), DN Cr(D,16Q) = {0}, dim D =2
then D = span]Fq{(fl(Pl), . A1(Py), (R(P1), ..., f2(Pn)) }

where —VQ(fl), —Z/Q(f2) S {17, 18, 19,20}, —I/Q(ﬂ) 75 —VQ(fz).
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Estimating RGHW of AG codes - cont

H*(Q) = {0,3,4,6,7,8,...,26,28,29,32}.
..say —vg(f) =19, —vq(f) = 20.

19+ H*(Q) = {19,22,23,25, ...,45,47,48,51}
20 + H*(Q) = {20,23,24,26, ... ,46,48,49,52}
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Estimating RGHW of AG codes - cont

H*(Q) = {0,3,4,6,7,8,...,26,28,29,32}.
..say —vg(f) =19, —vq(f) = 20.

19+ H*(Q) = {19,22,23,25, ...,45,47,48,51}
20 + H*(Q) = {20,23,24,26, ... ,46,48,49,52}

| supp(D) [=| H*(Q) N ((19 + H*(Q)) U (20 + H*(Q))) |.

In other words: we count how much we hit inside H*(Q)
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Estimating RGHW of AG codes - cont

PURE MAGIC: | H*(Q) N (20 + H*(Q)) |=n—20 =27 — 20 = 7.

We need to add, what 19 hits, but 20 does NOT hit.
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Estimating RGHW of AG codes - cont

PURE MAGIC: | H*(Q) N (20 + H*(Q)) |=n—20=27—-20=T7.
We need to add, what 19 hits, but 20 does NOT hit.

Recall, H*(Q) = {0, 3,4,6,7,something}.

) ) )
That is, we hit 3 more. In total we hit n — 20 + 3 = 10.
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Estimating RGHW of AG codes - cont

PURE MAGIC: | H*(Q) N (20 + H*(Q)) |=n—20=27—-20=T7.
We need to add, what 19 hits, but 20 does NOT hit.

Recall, H*(Q) = {0, 3,4,6,7,something}.

) ) )
That is, we hit 3 more. In total we hit n — 20 + 3 = 10.

Universal method.
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Estimating RGHW of AG codes - cont

Now —vq(fi) = 18, —vq(f) = 20.

* - - %
T T T
In total we hit n — 20+ 4 = 11.
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Estimating RGHW of one-point AG codes

A general method to estimate RGHW of ANY one-point AG codes.

Theorem

Consider the Hermitian curve x7t1 — y9 — y over F . Let 1, iz
be non-negative integers with 1 < 3 — up < g+ 1. For
1< m<dim(Ce(D, p1Q)) — dim(Cr(D, p2Q)) we have

Min(Ce(D, 11 Q), Ce(D, 112 Q))
>n—p+q(m—1)—(m-2)(m-1)/2.

The bound is sharp in most cases.
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