The structure of dual Grassmann codes

F. Piñero Joint work with P. Beelen

June 30, 2014 / Aalborg University, Aalborg, Denmark

Grassmannian

What is the Grassmannian?

Definition

Let V be a subspace of $\mathbb F$ of dimension m. The Grassmannian is defined as

$$\mathcal{G}_{m,\ell}(V) := \{ W \text{ a linear subspace of } V \mid \dim W = \ell \}$$

- Usually denoted by $\mathcal{G}_{m,\ell}$ (or $\mathcal{G}_{m,\ell}(\mathbb{F})$)
- It has several characterizations.

Grassmannian

Fortunately, the Grassmannian is well known!

- It is a projective variety.
- It has a nice embedding in $\mathbb{P}^{{m\choose \ell}-1}$

Plücker embedding

We embed $\mathcal{G}_{m,\ell}$ into $\mathbb{P}^{\binom{m}{\ell}-1}$ like this:

- Let $W \in \mathcal{G}_{m,\ell}$.
- Define W^M as a $\ell \times m$ matrix whose rowspace is W.
- For a subset I of ℓ columns, let W_I^M denote the minor given by I.

The map

$$W\mapsto (W_{l_1}^M:W_{l_2}^M:\cdots:W_{l_{\binom{m}{\ell}}}^M)\in \mathbb{P}^{\binom{m}{\ell}-1}$$

is well-defined and injective.

 $I_1, I_2, \dots I_{\binom{m}{\ell}}$ are all the subsets the set $\{1, 2, \dots, m\}$ of size ℓ .

This is known as the Plücker embedding.

Plücker embedding

Embedding $\mathcal{G}_{m,\ell}$ into $\mathbb{P}^{\binom{m}{\ell}-1}$ is quite useful.

- we can perform geometry on $\mathcal{G}_{m,\ell}$.
- It is also "a" code given by $\mathcal{G}_{m,\ell}$.

Grassmann codes

The code was defined by Ryan in 1987. Fortunately, the code has been extensively studied.

- $\mathcal{C}(\ell, m)$ is a $[|\mathcal{G}_{m,\ell}|, \binom{m}{\ell}, q^{\ell\ell'}]_q$ code.
- Its automorphism group of $C(\ell, m)$ is nice!
- We have identified the minimum weight codewords of $C(\ell, m)$.
- We know some of the higher weights of the codewords.

Affine Grassmann codes

Affine Grassmann codes were introduced by Beelen, Ghorpade and Høholdt in 2009.

Definition

The Affine Grassmann code $\mathcal{C}^{\mathbb{A}}(\ell,m)$ is defined by evaluating all $r \times r$ minors (0 $\leq r \leq \ell$) at all $\ell \times \ell'$ matrices over \mathbb{F}_q .

Why Affine Grassmann?

- The evaluation points of $\mathcal{C}^{\mathbb{A}}(\ell, m)$ are all $\ell \times \ell'$ matrices over a field.
- For a matrix M, consider the $\ell \times m$ matrix $(I_{\ell}|M)$.
- The matrices $(I_{\ell}|M)$ represent different elements of $\mathcal{G}_{m,\ell}$.

We also know several things about this code. Beelen, Ghorpade and Høholdt 2009.

- $C^A(\ell, m)$ is a $[q^{\ell\ell'}, \binom{m}{\ell}, |GL_{\ell}(q)|]_q$ code.
- The automorphism group of $\mathcal{C}^{\mathbb{A}}(\ell, m)$ is also nice.
- $\mathcal{C}^{\mathbb{A}}(\ell,m)$ is also realized by evaluating all minors at all $\ell \times \ell'$ matrices.
- We also know the minimum distance codewords of $\mathcal{C}^{\mathbb{A}}(\ell, m)$.

We know somethings about the dual code $C^{\mathbb{A}}(\ell, m)^{\perp}$. Beelen, Ghorpade and Høholdt 2012

- We know the minimum distance of $C^{\mathbb{A}}(\ell, m)^{\perp}$.
 - d = 4 if q = 2
 - d = 3 otherwise
- In both cases the minimum weight codewords generate $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$.

Theorem

Let c be a codeword of $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$ of minimum weight. Then supp(c) is in the orbit of the automorhism group of $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$ of one of the following:

The nonbinary case is simpler

Theorem

Let c be a codeword of $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$ of minimum weight. Then supp(c) is in the orbit of the automorhism group of $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$ of:

$$\left\{\begin{bmatrix}0&0&\cdots\\0&0&\cdots\\\vdots&\vdots&\ddots\end{bmatrix},\begin{bmatrix}1&0&\cdots\\0&0&\cdots\\\vdots&\vdots&\ddots\end{bmatrix},\begin{bmatrix}\frac{\alpha}{\alpha+1}&0&\cdots\\0&0&\cdots\\\vdots&\vdots&\ddots\end{bmatrix}\right\},\frac{\alpha}{\alpha+1}\neq0,1$$

where the coefficients of c are

$$c_0' = 1, c_M' = \alpha, c_{\alpha M}' = -(\alpha + 1)$$

What about the Grassmann codes?

 $\mathcal{C}(\ell,m)$ may also be reconstructed in this manner. First we need to know something about its minimum weight codewords.

Theorem

Let $\mathcal{C}(\ell,m)$ be the Grassmann code over \mathbb{F}_2 . Then the minimum distance of $\mathcal{C}(\ell,m)^{\perp}$ is 3 and the positions are given by spaces of the form

$$\langle V, a \rangle, \langle V, b \rangle, \langle V, a + b \rangle.$$

Minimum weight codewords of $C(\ell, m)^{\perp}$

Since the Plücker map is an embedding, $d(\mathcal{C}(\ell, m)^{\perp}) > 2$.

If $L = \langle V, a \rangle$, $N = \langle V, b \rangle$, $O = \langle V, a + b \rangle$ are three vector spaces of dimension ℓ then by the multilinearity of the determinant, we have a weight 3 codeword of $\mathcal{C}(\ell, m)^{\perp}$ with support given by L, N and O.

Now we will prove this is the only possiblilty.

Let L,N and O be the support of a codeword of $\mathcal{C}(\ell,m)^{\perp}$. After applying a suitable automorphism of $\mathcal{C}(\ell,m)^{\perp}$, we may assume the coefficients are $c_{L^M}=c_{O^M}=1$ and $c_{N^M}=-1$

$$L^M := (I_\ell | 0)$$

$$N^{M} := \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & n_{1,\ell+1} & \cdots & n_{1,j} \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 & n_{2,\ell+1} & \cdots & n_{2,j} \\ \vdots & 0 & \ddots & 0 & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & 0 & 1 & \ddots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & n_{\ell,\ell+1} & \cdots & n_{\ell,j} \end{pmatrix}$$

$$O^{M} := \begin{pmatrix} 1 & 0 & \cdots & o_{1,i} & 0 & \cdots & 0 & 0 & \cdots & o_{1,j} \\ 0 & 1 & \cdots & o_{2,i} & 0 & \cdots & 0 & 0 & \cdots & o_{2,j} \\ \vdots & 0 & \ddots & o_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots & o_{i,j} \\ \vdots & 0 & \cdots & o_{i+1,i} & 1 & \ddots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & o_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & o_{\ell,j} \end{pmatrix}$$

We look at the minors given by

$$I = \{1, 2, \dots, \ell\} \setminus \{i\} \cup \{j\}$$

$$j > \ell + 1$$

$$N_I^M = [n_{i,j}] = [0]$$

$$O_I^M = [o_{i,j}]$$

Therefore $o_{i,j} = n_{i,j} = 0$.

$$O^{M} := \begin{pmatrix} 1 & 0 & \cdots & o_{1,i} & 0 & \cdots & 0 & 0 & \cdots & o_{1,j} \\ 0 & 1 & \cdots & o_{2,i} & 0 & \cdots & 0 & 0 & \cdots & o_{2,j} \\ \vdots & 0 & \ddots & o_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & o_{i+1,i} & 1 & \ddots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & o_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & o_{\ell,j} \end{pmatrix}$$

We look at the minors given by

$$I = \{1, 2, \dots, \ell\} \setminus \{i'\} \cup \{j\}$$

$$j > \ell + 1, 1 \le i' \le \ell, i' \ne i$$

$$N_I^M = \begin{bmatrix} n_{i',j} & n_{i',i} \\ n_{i,j} & n_{i,i} \end{bmatrix} = \begin{bmatrix} n_{i',j} & 0 \\ 0 & 1 \end{bmatrix}$$

$$O_I^M = \begin{bmatrix} o_{i',j} & o_{i',i} \\ o_{i,j} & o_{i,i} \end{bmatrix} = \begin{bmatrix} o_{i',j} & o_{i',i} \\ 0 & 0 \end{bmatrix}$$

We must have $n_{i',j} = 0$.

$$N^{M} := \left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & n_{1,\ell+1} & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 & n_{2,\ell+1} & \cdots & 0 \\ \vdots & 0 & \cdots & 0 & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & n_{\ell,\ell+1} & \cdots & 0 \end{array}\right)$$

We look at the minors given by

$$I = \{1, 2, \dots, \ell\} \setminus \{i', i\} \cup \{j, \ell + 1\}$$

$$j > \ell + 1, 1 \le i' \le \ell, i' \ne i$$

$$N_{I}^{M} = \begin{bmatrix} n_{i',j} & n_{i',\ell+1} \\ n_{i,j} & n_{i,\ell+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$O_{I}^{M} = \begin{bmatrix} o_{i',j} & o_{i',\ell+1} \\ o_{i,j} & o_{i,\ell+1} \end{bmatrix} = \begin{bmatrix} o_{i',j} & 0 \\ o_{i,j} & 1 \end{bmatrix}$$

We must have $o_{i',j} = 0$.

$$O^{M} := \begin{pmatrix} 1 & 0 & \cdots & o_{1,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & o_{2,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & o_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & o_{i+1,i} & 1 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & o_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

We look at the minors given by $\{1, 2, \dots, \ell\} \setminus \{i'\} \cup \{\ell+1\}$

$$1 \le i' \le \ell, i' \ne i$$

$$N_{I}^{M} = \begin{pmatrix} n_{i',i} & n_{i',\ell+1} \\ n_{i,i} & n_{i,\ell+1} \end{pmatrix} = \begin{pmatrix} 0 & n_{i',\ell+1} \\ 1 & 1 \end{pmatrix}$$

$$O_{l}^{M} = \begin{pmatrix} o_{i',i} & o_{i',\ell+1} \\ o_{i,i} & o_{i,\ell+1} \end{pmatrix} = \begin{pmatrix} o_{i',i} & 0 \\ o_{i,i} & 1 \end{pmatrix}$$

Therefore $o_{i',i} = -n_{i',\ell+1}$.

$$N^{M} := \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & n_{1,\ell+1} & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 & n_{2,\ell+1} & \cdots & 0 \\ \vdots & 0 & \ddots & 0 & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & 0 & 1 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & n_{\ell,\ell+1} & \cdots & 0 \end{pmatrix}$$

$$O^{M} := \begin{pmatrix} 1 & 0 & \cdots & -n_{1,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -n_{2,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & -n_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & n_{i+1,i} & 1 & \ddots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & n_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

$$L^M := (I_\ell | 0)$$

$$N^{M} := \begin{pmatrix} 1 & 0 & \cdots & -n_{1,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -n_{2,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & -n_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & -n_{i+1,i} & 1 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & -n_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

$$O^{M} := \begin{pmatrix} 1 & 0 & \cdots & -n_{1,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -n_{2,i} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & -n_{i-1,i} & 0 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & 0 & \cdots & -n_{i+1,i} & 1 & \cdots & 0 & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & -n_{\ell,i} & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

Theorem

The code $C(\ell, m)^{\perp}$ is generated by its weight 3 codewords.

Let $V_{m-\ell}$ be a subspace of dimension $m-\ell$ of V.

$$\mathcal{G}^{\delta} := \{ W \in \mathcal{G}_{m,\ell} \mid \dim W \cap V_{m-\ell} = \delta \}$$

Remark

 \mathcal{G}^0 is the vector spaces of the affine grassmannian code.

Remark

 $\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$ is generated by sums of weight 3 codewords of $\mathcal{C}(\ell,m)^{\perp}$.

Remark

For $\delta = 1, 2, ... m - \ell$ For each $W \in \mathcal{G}^{\delta}$ add a weight 3 check where the other 2 positions are in $\mathcal{G}^{\delta-1}$.

Let $W=\langle U\cup x\rangle$, $x\in V_{m-\ell}$. Let $y\not\in V_{m-\ell}$, U. Then $W_1=\langle U\cup y\rangle$ and $W_2=\langle U\cup x+y\rangle$ satisfy the conditions of the theorem.

\mathcal{G}^0	\mathcal{G}^1	\mathcal{G}^2	\mathcal{G}^3		$\mathcal{G}^{m-\ell-1}$	$\mathcal{G}^{m-\ell}$
$\mathcal{C}^{\mathbb{A}}(\ell,m)^{\perp}$	0	0	0		0	0
M_1	$\mathbb{I}_{\#\mathcal{G}^1}$	0	0		0	0
0	M_2	$\mathbb{I}_{\#\mathcal{G}^2}$	0		0	0
0	0	M_3	$\mathbb{I}_{\#\mathcal{G}^3}$		0	0
:	:	:	:	٠	:	÷
0	0	0	0		$M_{m-\ell}$	$\mathbb{I}_{\#\mathcal{G}^{m-\ell}}$

Theorem

The code $C(\ell, m)^{\perp}$ is generated by its weight 3 codewords.

Theorem

The higher weights of $\mathcal{C}(\ell,m)^{\perp}$, except for $d_{[\ell]_q}^m$ satisfy

$$d_i - d_{i-1} \in \{1, 2\}.$$

Thank you for your attention.