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Function fields and rational places

Function field:
F a finite algebraic extension of Fq(X ).

Valuation ring:
Fq ( O ( F where ∀z ∈ F we have z ∈ O or z−1 ∈ O.

(Rational) place:
P = O\O∗ is the unique maximal ideal of O.
P is rational if O/P ' Fq.

Valuation: ∃t such that P = 〈t〉. ∀z ∈ F\{0} we uniquely can
write z = tnu where u ∈ O∗.

vP :


F → Z ∪∞

vp(z) =

{
n if z = tnu
∞ if z = 0
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Weierstrass semigroups

Let P be a rational place.

L-space:
L(nP) = {z ∈ F | vP(z) ≥ −n, and vQ(z) ≥ 0,∀Q 6= P}
L(∞P) = ∪n≥0L(nP)

Weierstrass semigroup:
ΛP = −vP(L(∞P)) = 〈w1, . . . ,wm〉.

Genus (an invariant of F ):
g = #(N0\ΛP).
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The maximal number of rational places

N(F ) = # rational places in F .

g(F ) = the genus of F .

Nq(g) = max{N(F ) | F a function field over Fq with g(F ) = g}.

Application in coding theory. Ensures high information rate while
still allowing for error-correction.
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The objective

Data base with known information on Nq(g) at manypoints.org

Hasse-Weil bound:
|N(F )− (q + 1)| ≤ 2g

√
q

But also bounds in terms of a Weierstrass semigroup of F
rather than genus:
If Λ = 〈w1, . . . ,wm〉 then
N(F ) ≤ |Λ\ ∪mi=1 (qwi + Λ)|+ 1.

Or bounds using partial information on semigroup:
N(F ) ≤ qw1 + 1.
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A particular simple example

Consider Fq = Ft2 and g = t(t−1)
2 .

Hasse-Weil says:
Nq(g) ≤ 2 t(t+1)

2 t + t2 + 1 = t3 + 1.

Λ = 〈t, t + 1〉 has genus t(t−1)
2 .

Hermitian function field has Λ as Weirstrass semigroup for P where
L(∞P) = Fq[X ,Y ]/〈X t+1 − Y t − Y 〉.

The affine variety of 〈X t+1 − Y t − Y ,X q − X ,Y q − Y 〉 is of size
t3.

Conclusion: The Hermitian function field has t3 + 1 rational places.

Therefore, Nq(g) = t3 + 1 for g = t(t−1)
2 .
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The general problem of estimating Nq(g)

Lower bounds on Nq(g) are established by determining and
studying new function fields.

Methods are involved: algebraic geometry and function field theory.

The idea in the present project:
To use insight on simplified description of L(∞Q) in combination
with computer search to say something about Nq(Λ) or Nq(g)
when possible.
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Background

In coding theory one only uses R = L(∞P) (or the generalization
to more places), but only seldom the function field Quot(R).

Høholdt, van Lint, Pellikaan and Miura introduced the concept of
order domains to obtain:

I simplified understanding of L(∞P) and corresponding codes
I generalizations to structures of higher transcendence degree.

Miura and Pellikaan (and G) showed that finitely generated order
domains R (over Fq) are equivalent to:

I quotient rings Fq[X1, . . . ,Xm)/I where I satisfies certain
Gröbner basis theoretical properties.

Matsumoto showed that for transcendence degree 1 (semigroups
being numerical):

I R ⊆ L(∞P) with equality if the “curve” is non-singular.
I The number of rational places equals the number of affine

roots of I over Fq plus 1.
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The order domain conditions (trdg=1)

Weighted degree ordering ≺w on monomials in X1, . . . ,Xm:

X i1
1 · · ·X im

m ≺w X j1
1 · · ·X

jm
m if

I either w1i1 + · · ·+ wmim < w1j1 + · · ·+ wmjm
I or w1i1 + · · ·+ wmim = w1j1 + · · ·+ wmjm, but

X i1
1 · · ·X im

m ≺ X j1
1 · · ·X

jm
m , where ≺ is a second fixed monomial

ordering (for example lexicographic)

An ideal I ⊆ F[X1, . . . ,Xm] is said to satisfy the order domain
conditions if:

I There exists a Gröbner basis {F1, . . . ,Fs} for I with respect to
≺w such that every Fi possesses (exactly) two monomials of
highest weight in its support.

I For the set of monomials which are NOT leading monomials
of any polynomial in I , no two have the same weight.
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Our approach

Given Λ = 〈w1, . . . ,wm〉
We start by establishing a minimal Gröbner basis for the
binomial ideal

Iw = 〈X i1
1 · · ·X

im
m −X

j1
1 · · ·X

jm
m | w1i1+· · ·+wmim = w1j1+· · ·+wmjm〉

with respect to the weighted degree ordering. Elimination via:

〈Tw1 − X1,T
w2 − X2, . . . ,T

wm − Xm〉

The above description satisfies the order domain conditions...but
we only have q affine points (q + 1 rational places). Hence, the
next step is to try to add more terms (of lower weight) in such a
way that the polynomials still constitute a Gröbner basis.

For principal ideals, i.e. Λ = 〈w1,w2〉 we can add anything!!!
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Christensen and Geil, Aalborg University, Denmark A Gröbner basis approach for counting rational places in algebraic function fields



Our approach

Given Λ = 〈w1, . . . ,wm〉
We start by establishing a minimal Gröbner basis for the
binomial ideal

Iw = 〈X i1
1 · · ·X

im
m −X

j1
1 · · ·X

jm
m | w1i1+· · ·+wmim = w1j1+· · ·+wmjm〉

with respect to the weighted degree ordering. Elimination via:

〈Tw1 − X1,T
w2 − X2, . . . ,T

wm − Xm〉

The above description satisfies the order domain conditions...but
we only have q affine points (q + 1 rational places). Hence, the
next step is to try to add more terms (of lower weight) in such a
way that the polynomials still constitute a Gröbner basis.
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Binomial ideals (with Ali Sepas):

Example:
Λ = 〈3, 5, 7〉. We investigate weighted degree orderings according
to weights w1 = 3, w2 = 5, w3 = 7, with the second ordering being
lexicographic.

Both X �lex Y �lex Z and X �lex Z �lex Y give GB with 6
polynomials:
{Y 7 − Z 5,XZ − Y 2,XY 5 − Z 4,X 2Y 3 − Z 3,X 3Y − Z 2,X 4 − YZ}

All other choices of lexicographic part give GB with 4 polynomials.
For instance both Z �lex X �lex Y and Z �lex Y �lex X give:
{X 5 − Y 3,ZY − X 4,ZX − Y 2,Z 2 − X 3Y }.

Christensen and Geil, Aalborg University, Denmark A Gröbner basis approach for counting rational places in algebraic function fields



Binomial ideals (with Ali Sepas):

Example:
Λ = 〈3, 5, 7〉. We investigate weighted degree orderings according
to weights w1 = 3, w2 = 5, w3 = 7, with the second ordering being
lexicographic.

Both X �lex Y �lex Z and X �lex Z �lex Y give GB with 6
polynomials:
{Y 7 − Z 5,XZ − Y 2,XY 5 − Z 4,X 2Y 3 − Z 3,X 3Y − Z 2,X 4 − YZ}

All other choices of lexicographic part give GB with 4 polynomials.
For instance both Z �lex X �lex Y and Z �lex Y �lex X give:
{X 5 − Y 3,ZY − X 4,ZX − Y 2,Z 2 − X 3Y }.
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From binomial ideal to L(∞P)

If binomials are successfully modified to other polynomials
{F1, . . . ,Fs} satisfying the order domain conditions, then we:

I Check if 1 ∈ 〈Fi , ∂Fi
∂Xj
| 1 ≤ i ≤ s and 1 ≤ j ≤ m〉 in which

case L(∞P) = Fq[X1, . . . ,Xm]/〈F1, . . . ,Fs〉.
I Determine the number of affine points by establishing a

Gröbner basis for 〈F1, . . . ,Fs ,X q
1 − X1, . . . ,X

q
m − Xm〉 and by

using the footprint bound.
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The footprint bound

By definition, a Gröbner basis for I is a generating set
{F1, . . . ,Fs} such that if F ∈ I then lm(F ) is divisible by some
lm(Fi ).

By definition, the footprint of an ideal with respect to a monomial
ordering is the set of monomials that are not leading monomial of
any polynomial in I . Is easily read of from the Gröbner basis.

The footprint bound: If the footprint is finite, then the size of
the corresponding affine variety is at most equal to the size of the
footprint.

If F is perfect and I contains a square free univariate polynomial in
each variable then equality holds.

Hence, we consider the footprint of I + 〈X q
1 − X1, . . . ,X

q
m − Xm〉.
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By definition, a Gröbner basis for I is a generating set
{F1, . . . ,Fs} such that if F ∈ I then lm(F ) is divisible by some
lm(Fi ).

By definition, the footprint of an ideal with respect to a monomial
ordering is the set of monomials that are not leading monomial of
any polynomial in I . Is easily read of from the Gröbner basis.
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Preliminary results

I The bound Nq(〈w1,w2〉) ≤ min{qw1 + 1, q2 + 1} is often
sharp, but not always.

I New study: Lower bounds on the minimal number of rational
places

I For more generators w1, . . . ,wm the method needs to be
refined to be efficient.

I Maybe one should start with a minimal generating set of
polynomials (not GB), add lower terms and first then
calculate GB. (For calculation of minimal generating sets see:
Chap. 4 of Assi and Garćıa-Sánchez, “Numerical Semigroups
and Applications,” Springer 2016).

I ...or...we have other ideas.
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Two generators

Maximal number of rational places (exhaustive search except for ∗)

Λ\q 2 3 4 8 9

〈2, 3〉 5 7 9 13 16
〈2, 5〉 5 7 9 17 19
〈2, 7〉 5 7 9 17 19
〈3, 4〉 5 10 13 21∗ 28
〈2, 9〉 5 7 9 17 19
〈3, 5〉 5 10 13 − −
〈4, 5〉 5 10 17 − −
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Two generators

Minimal number of rational places (exhaustive search except for ∗)

Λ\q 2 3 4 8 9 16 27 32

〈2, 3〉 1 1 1 5 4 9∗ 19∗ 25∗

〈2, 5〉 1 1 1 1 1 8∗ 19∗ 25∗

〈3, 4〉 1 1 1 2∗ − − − −
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